Opti 501 Final Exam Solutions 12/17/2019

Problem 1) a) The average E-field over a spherical shell of radius r > R (i.e., outside the dipole)
can readily be shown to vanish, that is,
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Equation (1) reveals that the integral of the dipolar E-field over the entire region outside the
sphere of radius R equals zero. In what follows, we will use this result to argue that the E-fields
produced by a large number of uniformly distributed spherical dipoles throughout free space
average out to zero everywhere except, of course, inside the individual dipoles themselves,
where the average E-field produced by all the dipoles equals the local internal dipolar field,
namely, E = — P,/3¢,.

b) The units of the dipole moment p, are [coulomb - meter], and those of the E-field E,Z are
[volt/meter]. Thus, the polarizability coefficient { has units of [coulomb - meter? /volt], which is
the same as [farad - meter?].

c) The volume occupied by each spherical particle is v = 4mR3/3. Since there are N particles
per unit volume, the volume fraction occupied by the (randomly distributed) particles is
4wNR3/3. As pointed out in part (a), the E-field produced by each particle outside its own
sphere averages out to zero, but the internal field E = —P,2/3¢, remains. The spatially-averaged
E-field over a unit volume of space thus has a contribution E,Z from the applied field, and a
second contribution, —(4mwNR3/3) P,Z/3s, = —Np,/3s, = —N{E,Z/3¢,, from the interiors of
all the spherical particles. The spatially averaged E-field over a unit volume is thus given by
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d) The dielectric susceptibility y, of the gas is the dimensionless ratio of its average induced
polarization, namely, (P(r)) = N{E,Z, to &, times the average E-field across the medium,
namely, &,(E(1)); that is,
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e) If the “gas” happens to be a homogeneous mixture of K different components, each having
number-density N, and polarizability ,, we will have
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f) The general result obtained in part (e) is similar to the Clausius-Mossotti correction for the
susceptibility y.(w), with Cx(w) of Chapter 6, Eq.(11b), rather than being given by Eq.(8) of



Chapter 6, replaced here by Y.X_,(N,{,/¢,). The polarizability {, of type k spheres is, of course,
a static polarizability associated with a time-independent excitation E-field E,Z, whereas, in the
Lorentz oscillator model, the polarizability (qi;/m,)/(wé, — w? — iy,w) is a dynamic property
of individual oscillators excited by E, cos(wt) Z, which is an oscillatory field of frequency w;
see Chapter 6, Eq.(4). Despite these differences, the results of the static model remain applicable
in many dynamic situations, and the assumptions that led to the above Egs.(3) and (4) can be
shown to remain more or less valid at microwave and even optical frequencies —so long as the
particles are sufficiently small, isotropic, and uniformly distributed throughout space.

Problem 2) a) In the incidence medium, both the incident and reflected k-vectors are real, with
shared magnitude of k,n; and with k,(cr) = k,(cl). In the transmittance medium, k% = k2 + kZ =
k2n2 and k" = k. Therefore,

kY =k n,sinf@x — k,n, cos b Z, (1a)
k® = k,n, sin X + k,n, cos 0 Z, (1b)
k® = kon, sin8 X — \/(kon,)? — (kon; sin )2 2. (1c)

Digression: When k;t) is real-valued (i.e., when n; sin @ < n,), the vector k®® makes an angle 8" with the normal to
the interfacial plane. In this case, tan 8’ = |k,(ct)/k§t)| =n;sinf/n? —n?sin? @ and cos®’' = 1/V1 +tan2 9’ =
\/1 — (n, sin @/n,)?2. Consequently, sin 8’ = tan 6’ cos 0’ = (n,/n,) sin6, and k® = k,n,(sin 0’ X — cos 6’ 2).

b) From Maxwell’s 1* equation, V - D = py,.., we find, in the absence of free charges, k- D =
&c(w)k - E = 0, which yields k- E = k,E,, + k,E,, = 0. Therefore,
EQ = (tan9)E, (2a)

ED = —(tan0)EL (2b)
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¢) Maxwell’s 3" equation, V x E = —dB/dt, yields H, = k X E,/ (u,pw) = (k/k,) X E,/Z, =
(k,E,, — kyE,,)y/(k,Z,). Consequently,
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d) Continuity of the tangential E and tangential H at the interface between the two media yields
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These equations can now be solved for the reflection and transmission coefficients, as follows:
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¢) At the Brewster angle 6, we have p,, = 0. Therefore,
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f) Total internal reflection (TIR) occurs when the expression under the square root in Fresnel’s
formulas becomes negative, that is, when (n,/n,)sin@ > 1. Under this circumstance, we will
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g) The Poynting vector S(r, t) is the cross-product of the real-valued E(r,t) and the real-valued
H(r,t). In addition to the complex field amplitudes E, and H,, the complex exponential factor
exp[i(k - r — wt)] has real and imaginary parts, which need to be taken into account. We write
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In what follows, we consider two possible situations corresponding to 8 < 6, and 8 > 6.,
where 0. is the critical angle of total internal reflection.

Case I: 8 < 6.. Here, we have E(t) |E(t)|e“p0x k,(ct) = kfci) = kony sinf and, recalling
Egs.(1c), (2¢), and (3c¢),
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Case II. 6 > 6.. Again, we write E(t) IE(t)le“”Ox k(t) k,(ci) = kyn, sin@ and, recalling
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Consequently,
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h) The time-averaged Poynting vector in Case Il above is readily found to be
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The time-averaged Poynting vector is seen to have only an x-component. Moreover, this
component decays exponentially with the distance z from the interface between media 1 and 2.




